CHEMISTRY HIGHER LEVEL PAPER 1 Thursday 8 May 2008 (afternoon) 1 hour ## **INSTRUCTIONS TO CANDIDATES** - Do not open this examination paper until instructed to do so. - Answer all the questions. - For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided. - The periodic table is provided for reference on page 2 of this examination paper. | | | | ~ | 10 | | 0 | | | | |--------------------|---|------------------------|------------------------|--------------------------|--------------------------|---------------------------|-----------------------------|--------------------------|-----------------| | • | 0 | 2
He
4.00 | 10
Ne
20.18 | 18
Ar
39.95 | 36
Kr
83.80 | 54
Xe
131.30 | 86
Rn
(222) | | | | t | _ | | 9
F
19.00 | 17
CI
35.45 | 35
Br
79.90 | 53
I
126.90 | 85
At
(210) | | 71 | | | o | | 8
O
16.00 | 16
S
32.06 | 34
Se
78.96 | 52
Te
127.60 | 84 Po (210) | | 07 | | ι | n | | 7
N
14.01 | 15
P
30.97 | 33
As
74.92 | 51
Sb
121.75 | 83
Bi
208.98 | | 69
L | | , | 4 | | 6
C
12.01 | 14
Si
28.09 | 32
Ge
72.59 | 50
Sn
118.69 | 82
Pb
207.19 | | 89 | | , | n | | 5
B
10.81 | 13
Al
26.98 | 31
Ga
69.72 | 49
In
114.82 | 81
TI
204.37 | | L9 | | | | | | | 30
Zn
65.37 | 48
Cd
112.40 | 80
Hg
200.59 | | 99 | | ole | | | | | 29
Cu
63.55 | 47
Ag
107.87 | 79
Au
196.97 | | 65
T.b | | The Periodic Table | | | | | 28
Ni
58.71 | 46
Pd
106.42 | 78
Pt
195.09 | | 64 | | Perio | | | | | 27
Co
58.93 | 45
Rh
102.91 | 77
Ir
192.22 | | 63 | | The | | | | | 26
Fe
55.85 | 44 Ru 101.07 | 76
Os
190.21 | | | | | | | | | 25
Mn
54.94 | 43
Tc
98.91 | 75
Re
186.21 | | 61
Pm | | | | Number | n ent
Mass | | 24
Cr
52.00 | 42
Mo
95.94 | 74
W
183.85 | | 09 | | | | Atomic Number | Element Atomic Mass | | 23
V
50.94 | 41
Nb
92.91 | 73
Ta
180.95 | | 59
Pr | | | | | | | 22
Ti
47.90 | 40 Zr 91.22 | 72
Hf
178.49 | | 58 | | | | | | | 21
Sc
44.96 | 39
Y
88.91 | 57 †
La
138.91 | 89 ‡ Ac (227) | !- - | | , | 7 | | 4 Be 9.01 | 12
Mg
24.31 | 20
Ca
40.08 | 38
Sr
87.62 | 56
Ba
137.34 | 88
Ra
(226) | | | • | - | 1
H
1.01 | 3
Li
6.94 | 11
Na
22.99 | 19
K
39.10 | 37
Rb
85.47 | 55
Cs
132.91 | 87
Fr
(223) | | | | l | | | | | | | | | | |] [| | | |---------------------------|-----|-----|---------------------| | 71
Lu
174.97 | | 103 | Lr (260) | | 70
Yb
173.04 | | 102 | No
(259) | | 69
Tm
168.93 | | 101 | Md (258) | | 68
Er
167.26 | | 100 | Fm (257) | | 67
Ho
164.93 | | 66 | Es (254) | | 66
Dy
162.50 | | 86 | Cf
(251) | | 65
Tb
158.92 | | 26 | Bk (247) | | 64
Gd
157.25 | | 96 | Cm (247) | | 63
Eu
151.96 | | 95 | Am (243) | | 62
Sm
150.35 | | 94 | Pu (242) | | 61
Pm
146.92 | | 93 | Np
(237) | | 60
Nd
144.24 | | 92 | U
238.03 | | 59
Pr
140.91 | | 91 | Pa
231.04 | | 58
Ce
140.12 | | 06 | Th 232.04 | | -! | • | ++ | | - 1. How many molecules are present in a 9.0 g sample of water? - A. 0.5 - B. 1.0 - C. 6.0×10^{23} - D. 3.0×10^{23} - 2. What is the coefficient for oxygen when this equation is balanced using the lowest whole number? $$C_4H_{10} + O_2 \rightarrow CO + H_2O$$ - A. 4 - B. 5 - C. 9 - D. 13 - 3. What is the maximum mass of iron that can be produced from the reduction of 80 tonnes of iron(III) oxide ($M_r = 160$), based on this equation? $$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$ - A. 28 tonnes - B. 56 tonnes - C. 84 tonnes - D. 112 tonnes | Species | Number of protons | Number of electrons | Number of neutrons | |---------|-------------------|---------------------|--------------------| | L | 12 | 12 | 12 | | M | 13 | 13 | 13 | | P | 13 | 10 | 13 | | Q | 12 | 12 | 14 | -4- - A. L and M - B. L and P - C. P and Q - D. L and Q - 5. How many unpaired electrons are there in the Co^{2+} ion? - A. 7 - B. 5 - C. 3 - D. 2 - **6.** Which processes occur in the mass spectrometer? - I. Ionization by electron bombardment - II. Acceleration by a magnetic field - III. Deflection by a magnetic field - A. I and II only - B. I and III only - C. II and III only - D. I, II and III - 7. Which properties decrease in value when descending group 1? - I. Atomic radius - II. Ionization energy - III. Electronegativity - A. I and II only - B. I and III only - C. II and III only - D. I, II and III - 8. The ionization energies of three consecutive elements in the periodic table are 1680, 2080 and 494 kJ mol⁻¹ respectively. Which of the following shows the elements with these values? - A. O F Ne - B. F Ne Na - C. Ne Na Mg - D. Na Mg Al - **9.** Which comparison of radii of atoms and ions is correct? - A. $C1^- > C1$ - B. $H^+ > H^-$ - C. $Na^+ > Na$ - D. $Mg^{2+} > Mg^{+}$ -6- | ٨ | Tho | agidia | abaraatar | of the | avidad | decreases | |---|------|--------|-----------|--------|--------|-----------| | А | ı ne | acidic | cnaracter | or the | oxides | decreases | - B. The electrical conductivity of the elements increases. - C. The bonding of the chlorides changes from ionic to covalent. - D. Electronegativity decreases. 11. Which substance will **not** conduct an electric current? - A. C(s)(graphite) - B. NaF(1) - C. CaO(s) - D. KI(aq) **12.** Which of the following liquids is non-polar? - A. Water - B. Hexane - C. Propanone - D. Ethanol 13. The following substances all contain a nitrogen to nitrogen bond: N_2 , N_2H_4 , N_2H_2 . Which shows them in **increasing** order of nitrogen to nitrogen bond length (smallest first)? - A. N_2H_4 , N_2H_2 , N_2 - B. N_2, N_2H_2, N_2H_4 - C. N_2H_2 , N_2H_4 , N_2 - $D. \quad \ N_{2}H_{4}\,,\,N_{2}\,,\,N_{2}H_{2}$ | 14. | Wha | It is the bond angle in NO_3 ? | |-----|-----|--| | | A. | 107° | | | B. | 109.5° | | | C. | 120° | | | D. | 180° | | | | | | 15. | | temperature of 1 dm ³ of a gas is increased from 32°C to 64°C at constant pressure. What is new volume in dm ³ ? | | | A. | 1.1 | | | B. | 1.3 | | | C. | 1.6 | | | D. | 2.0 | | | | | | 16. | Whi | ch change does not lead to an increase in entropy? | | | A. | Mixing nitrogen and oxygen gases at room temperature | | | B. | Cooling steam so that it condenses to water | | | C. | Heating hexane to its boiling point | | | D. | Dissolving sugar in water | | | | | $$S(s) + O_2(g) \rightarrow SO_2(g)$$ $\Delta H^{\oplus} = -300 \text{ kJ}$ $2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$ $\Delta H^{\oplus} = -800 \text{ kJ}$ -8- What is the enthalpy change for this reaction in kJ? The enthalpy changes for two reactions are shown below. $$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$ A. -200 **17.** - B. -500 - C. -1100 - D. -1400 **18.** Which process is exothermic? - A. $Na(s) \rightarrow Na(g)$ - B. $\operatorname{Ca}(g) \to \operatorname{Ca}^+(g) + e^-$ - C. $Br(g) + e^- \rightarrow Br^-(g)$ - D. $I_2(g) \rightarrow 2I(g)$ 19. Which equation represents the standard enthalpy of formation of calcium fluoride? - A. $Ca(g) + F_2(g) \rightarrow CaF_2(g)$ - B. $Ca(s) + F_2(g) \rightarrow CaF_2(s)$ - C. $Ca^{2+}(g) + 2F^{-}(g) \rightarrow CaF_{2}(s)$ - D. $Ca^{2+}(s) + 2F^{-}(g) \rightarrow CaF_{2}(s)$ - 20. 25 cm³ of 1.0 mol dm⁻³ NaOH is added to 25 cm³ of 1.0 mol dm⁻³ HCl. The temperature rise is 6°C. Which reactants will also give a temperature rise of 6°C? - A. 25 cm³ of 2.0 mol dm⁻³ NaOH and 25 cm³ of 2.0 mol dm⁻³ HCl. - B. 50 cm³ of 1.0 mol dm⁻³ NaOH and 50 cm³ of 1.0 mol dm⁻³ HCl. - C. 50 cm³ of 0.5 mol dm⁻³ NaOH and 50 cm³ of 0.5 mol dm⁻³ HCl. - D. 100 cm³ of 0.25 mol dm⁻³ NaOH and 100 cm³ of 0.25 mol dm⁻³ HCl. - **21.** Which reaction is the most exothermic? - A. $Li^+(g) + F^-(g) \rightarrow LiF(s)$ - B. $Na^+(g) + Cl^-(g) \rightarrow NaCl(s)$ - C. $Mg^{2+}(g) + O^{2-}(g) \rightarrow MgO(s)$ - D. $Ca^{2+}(g) + S^{2-}(g) \to CaS(s)$ - **22.** The table shows data for a reaction between X and Y. | Experiment | [X]moldm ⁻³ | [Y]moldm ⁻³ | Rate of reaction mol dm ⁻³ s ⁻¹ | |------------|------------------------|------------------------|---| | 1 | 0.4 | 0.24 | 1.2×10 ⁻⁴ | | 2 | 0.8 | 0.24 | 2.4×10 ⁻⁴ | | 3 | 0.4 | 0.12 | 3.0×10 ⁻⁵ | The overall order of reaction is: - A. 1 - B. 2 - C. 3 - D. 4 - 23. Which units could be used for the rate of a chemical reaction? - A. $moldm^{-3} min$ - B. $mol^{-1} min^{-1}$ - C. dm³ min - D. $mol dm^{-3} min^{-1}$ - 24. 10 cm³ of liquid hexane is placed in a closed 1 dm³ container at 298K. Which change would increase the equilibrium vapour pressure of the hexane in the container? - A. Putting the container in a refrigerator - B. Adding 10 cm³ of hexane to the container - C. Reducing the volume of the container to 0.5 dm³ - D. Putting the container in a water bath at 308 K - 25. Which change will increase the equilibrium concentration of sulfur trioxide in this reaction? $$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$ $\Delta H^{\ominus} = \text{negative}$ - A. Decreasing the concentration of oxygen - B. Increasing the pressure - C. Using a catalyst - D. Increasing the temperature **26.** Which species act as Brønsted – Lowry bases in the following reactions? $$CH_3NH_2 + H_2O \rightleftharpoons CH_3NH_3^+ + OH^-$$ $NH_2^- + H_2O \rightleftharpoons NH_3 + OH^-$ - I. CH₃NH₂ - II. CH₃NH₃⁺ - III. NH₂ - A. I and II only - B. I and III only - C. II and III only - D. I, II and III - 27. The ionic product constant of water at 45° C is 4×10^{-14} mol² dm⁻⁶. Which statement is correct about pure water at 45° C? - A. pH = 7 - B. $[H^+] = [OH^-]$ - C. $[OH^{-}] > [H^{+}]$ - D. $[H^+] > [OH^-]$ - **28.** A weak monoprotic acid is 10% dissociated in a solution of concentration 0.01 mol dm⁻³. What is the pH value of the solution? - A. 0.1 - B. 1.0 - C. 2.0 - D. 3.0 | 29. | Which change increases the pH of a solution from 3 to 6? | | | | | | |-----|--|--|--|--|--|--| | | A. | Doubling the [H ⁺] | | | | | | | B. | Halving the [OH ⁻] | | | | | | | C. | Decreasing the [H ⁺] by a factor of 1000 | | | | | | | D. | Decreasing the [OH ⁻] by a factor of 1000 | | | | | | | | | | | | | | 30. | Whi | ch pair of compounds, in aqueous solution, could be used to make a buffer solution? | | | | | | | A. | CH ₃ COOH and HC1 | | | | | | | B. | HC1 and NaOH | | | | | | | C. | HCl and NH ₄ Cl | | | | | | | D. | HCOOH and NaOH | | | | | | | | | | | | | | 31. | | ng the electrolysis of aqueous sulfuric acid, 1g of hydrogen gas forms at the negative electrode. It mass in grams of oxygen forms at the positive electrode in the same time? | | | | | | | A. | 4 | | | | | | | B. | 8 | | | | | | | C. | 16 | | | | | | | D. | 32 | | | | | | | | | | | | | | 32. | Whi | ch is the strongest oxidizing agent? | | | | | | | A. | ${\rm I_2}$ | | | | | | | B. | \mathbf{I}^- | | | | | | | C. | F_2 | | | | | | | D. | F ⁻ | | | | | **33.** The following are standard electrode potentials. $$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$$ $E^{\ominus} = -0.76 \text{ V}$ $Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s)$ $E^{\ominus} = -1.18 \text{ V}$ What is the E^{Θ} for this reaction? $$Mn(s) + ZnSO_4(aq) \rightarrow MnSO_4(aq) + Zn(s)$$ - A. -0.42 V - B. +0.42 V - C. -1.94 V - D. +1.94 V - 34. Which compound cannot be easily oxidized using acidified potassium dichromate(VI) solution? - A. CH₃CH₂CH₂OH - B. CH₃CH(OH)CH₃ - C. (CH₃), CHCH₂OH - D. $(CH_3)_3COH$ - **35.** In which reaction does hydrogen act as an oxidizing agent? - A. $Ca + H_2 \rightarrow CaH_2$ - B. $F_2 + H_2 \rightarrow 2HF$ - C. $C_2H_2 + H_2 \rightarrow C_2H_4$ - $D. \quad O_2 + 2H_2 \rightarrow 2H_2O$ | 36. | Which | species | cannot | act as | a nucl | leophile? | |------------|-------|---------|--------|--------|--------|-----------| | | | | | | | | - A. H₂O - B. NH₃ - C. CN - D. CH₄ ## 37. Which compounds show three main peaks in their ¹H NMR spectra? - I. CH₃CH₂CH₂CH₃ - II. CH₃CH₂COOH - III. (CH₃)₃CCH₂CH₂Br - A. I and II only - B. I and III only - C. II and III only - D. I, II and III - **38.** Which halogenoalkane reacts most rapidly with silver nitrate solution to form a precipitate? - A. 1-bromobutane - B. 1-iodobutane - C. 2-bromo-2-methylpropane - D. 2-iodo-2-methylpropane | 39. \(\text{V}\) | Which i | s the cor | rect formu | la of 2,3- | -dichloro- | 2-methylpe | entane? | |-------------------------|---------|-----------|------------|------------|------------|------------|---------| |-------------------------|---------|-----------|------------|------------|------------|------------|---------| - A. CH₃CCl(CH₃)CHClCH₂CH₃ - B. CH₃CH(CH₃)CCl₂CH₂CH₃ - C. CH₃CCl₂CH(CH₃)CH₂CH₃ - D. CH₃CH₂CH₂CHClCHClCH₃ - **40.** What type of reaction occurs when hexanedioic acid and 1,6-diaminohexane react together to form nylon? - A. Addition - B. Condensation - C. Esterification - D. Substitution